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FOREWORD 

This r e p o r t  i s  a summary of  the  work conducted 

under G.O. 8739 i n  compliance with Contract 

NAS8-20143. 

ABSTRACT 

An a n a l y t i c a l  i nves t iga t ion  w a s  conducted of 

pump-generated pressure and flow o s c i l l a t i o n s ,  

and a n a l y t i c a l  procedures were developed which 

may be appl ied  t o  the design and a n a l y s i s  of 

turbopumps from an o s c i l l a t i o n  s tandpoin t .  The 

pump blade wake o s c i l l a t i o n s  were s tud ied  from 

the viewpoint of the generation of o s c i l l a t i o n  

waves; the transmission of waves i n  the pump 

discharge system; the reinforcement, o r  super- 

p o s i t i o n ,  of waves i n  the pump discharge from 

mul t ip l e  sources;  and the e l imina t ion  of waves 

by acous t i c  dampers. I n i t i a l  s t u d i e s  were made 

of c a v i t a t i o n  o s c i l l a t i o n s  by studying t h e  cav i ty  

volume of an inducer and i t s  e f f e c t  on the osc i l -  

l a t i o n s .  Experimental programs were conducted t o  

v e r i f y  and supplement c e r t a i n  of the a n a l y t i c a l  

r e s u l t s .  A l imi ted  experimental study was a l s o  

made of s t a l l  o s c i l l a t i o n s  i n  an a x i a l  and cen- 

t r i f u g a l  pump. 
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INTRODUCTION 

Pressure  and flow o s c i l l a t i o n s  i n  the discharge system of turbopumps a r e  

a commonly observed phenomena. I n  m o s t  low-pressure pumps, the o s c i l l a -  

t i o n  amplitudes a re  small and a r e  no t  de t r imenta l  t o  the main func t ion  of 

t h e  pumps. I n  high-pressure pumps, these o s c i l l a t i o n s ,  though s t i l l  a 

small f r a c t i o n  of the t o t a l  head, become s i g n i f i c a n t  i n  amplitude. The 

observed o s c i l l a t i o n  frequencies vary over a l a r g e  range from l e s s  than 

1 0  t o  1000 o r  more cps. The higher frequency o s c i l l a t i o n s  may cause 

t h r u s t  chamber s t a b i l i t y  problems o r  may exc i t e  v i b r a t i o n  i n  s t r u c t u r a l  

p a r t s  of the pump and feed system. 

l imit-cycle o s c i l l a t i o n s  transmitted through the  feed system and r e s u l t  

i n  engine t h r u s t  o s c i l l a t i o n s .  These l imit-cycle o s c i l l a t i o n s  may couple 

wi th  vehic le  f l u i d  and s t r u c t u r a l  dynamics i n  such a way as t o  cause 

vehic le  o r  mission f a i l u r e .  

The low-frequency o s c i l l a t i o n s  a r e  

S u f f i c i e n t  f a m i l i a r i t y  wi th  pump-generated o s c i l l a t i o n s  has been obtained 

a t  Rocketdyne t o  c l a s s i f y  c e r t a i n  d i s t i n c t  types of o s c i l l a t i o n s  accord- 

i n g  t o  t h e i r  source. 

c l a s s e s  of o s c i l l a t i o n s  which a r e  s u f f i c i e n t l y  independent t o  permit  an 

independent study of each: 

I t  is convenient t o  d i s t i n g u i s h  th ree  d i s t i n c t  

1. Blade Wake Osc i l l a t ions .  A blade wake c o n s i s t s  of low-energy 

f l u i d  i n  the blade surface boundary l a y e r .  

bined wi th  the main flow between wakes, fann a pe r iod ic  flow pat-  

t e r n  i n  the blade-to-blade d i r e c t i o n  around the  pump periphery.  

To a downstream blade row r o t a t i n g  r e l a t i v e  t o  t h a t  upstream, 

the wakes of the preceding blade row appear as an unsteady flow 

f i e l d .  This flow f i e l d  i s  respons ib le  f o r  s e t t i n g  up acous t i c  

The blade wakes, com- 
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waves i n  the system which a r e  measured f a r  downstream of the  

blade row and which lead  t o  resonant conditions i n  the system 

r e s u l t i n g  i n  o s c i l l a t i o n  amplitudes seve ra l  times l a r g e r  than 

a t  off-resonance. 

2. 

3 .  

Cavitation-Induced Osc i l l a t ions .  The no ta t ion  "cavi ta t ion-  

induced" o s c i l l a t i o n s  r e f e r s  t o  the low-frequency o s c i l l a t i o n s  

(0 t o  50 cps) commonly found a t  t he  inducer i n l e t  and i n  the 

pump discharge as the NPSH i s  lowered. 

S t a l l  Osc i l l a t ions .  As t he  flowrate through a pump i s  reduced 

from i t s  design value,  the pump head i s  increased by v i r t u e  of  

the increased blade loading. A t  some value of the flow, the 

blade loading w i l l  reach a l i m i t ,  t he  blades w i l l  s t a l l ,  and, 

generally,  some form of unsteady flow w i l l  r e s u l t .  

E s s e n t i a l l y ,  a l l  a spec t s  of the blade wake o s c i l l a t i o n s  were considered, 

i .e ., the o s c i l l a t i o n  generation, transmission, reinforcement o r  super- 

p o s i t i o n ,  and damping. The c a v i t a t i o n  and s t a l l  o s c i l l a t i o n  ana lyses  were 

n o t  as extensive as those of the blade wake o s c i l l a t i o n s .  The program i s  

p r imar i ly  a n a l y t i c a l ,  the experimental phases being designed t o  corroborate 

and supplement the a n a l y t i c a l  r e s u l t s .  

2 
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BLADE W m  OSCILLATIONS--GE"ERATION 
OF ACOUSTIC WAVES 

The v e l o c i t y  leav ing  a blade row is  nonuniform due t o  both the grad ien ts  

i n  the region designated a s  the p o t e n t i a l  flow and the viscous boundary 

l a y e r s  a long  the blade surfaces,  bu t  i s  pe r iod ic  i n  the mean, the per iod  

extending from blade t o  blade. This nonuniform v e l o c i t y  would appear t o  

a downstream blade r o w  i n  r e l a t i v e  motion t o  the upstream blade row as a 

pe r iod ic  unsteady v e l o c i t y  f i e l d  which produces unsteady p res su res  on the 

downstream blades.  

t h e  blade row and t h e  unsteady p res su res  a r e  respons ib le  f o r  the genera- 

t i on  of acous t i c  pressure  waves. 

genera t ion  of blade wake o s c i l l a t i o n s  would involve the following tasks:  

Both the  unsteady v e l o c i t y  f i e l d  a t  the entrance of 

Therefore, a complete a n a l y s i s  of t he  

1 .  Compute the nonuniform v e l o c i t y  f i e l d  a t  the e x i t  of the upstream 

blade r o w  by performing a: 

a .  P o t e n t i a l  flow ana lys i s  

b. Boundary-layer ana lys i s  

Given an unsteady ve loc i ty  f i e l d  (which would be the nonuniform 

f i e l d  ca l cu la t ed  i n  1 above o r  measured experimentally),  ca l cu la t e :  

2 .  

a .  The acous t i c  waves generated by the unsteady v e l o c i t y  a t  t he  

entrance of the blade r o w  

b. The unsteady blade p res su re  loads due t o  t h e  unsteady v e l o c i t y  

f i e l d  

c .  The acous t i c  waves generated by these unsteady pressure  loads 

Task 1 above i s  secondary t o  the main objec t ive  of the cu r ren t  study and 

was  no t  pursued t o  any l a rge  extent .  

l a t i n g  the flow i n  the blade-to-blade plane of a c e n t r i f u g a l  pump was 

A stream f i lament  method f o r  calcu- 

3 
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developed and yielded good r e s u l t s  f o r  an example r a d i a l  impel le r  problem. 

A survey was  a l s o  made of the l i t e r a t u r e  t o  determine a method of es t imat-  

i n g  the boundary l a y e r  i n  a turbopump r o t o r ,  bu t  no adequate method was 

a v a i l a b l e  due t o  t h e  complexity of t h e  problem. 

A primary e f f o r t  w a s  made t o  i n d i c a t e  the  r e l a t i v e  importance of t he  

acous t i c  waves generated by the two r e l a t e d  mechanisms ind ica t ed  i n  

Tasks 2a and 2c. Before t h i s  could be done, Task 2b had t o  be performed 

t o  i n d i c a t e  the  amplitude of the unsteady p res su res  on the downstream 

blade row.  I n  the l i t e r a t u r e ,  these unsteady p res su res  have been i n v e s t i -  

gated as a function of four  e f f e c t s  which have been designated as the c i r -  

c u l a t i o n ,  blade thickness,  wake, and wake d i s t o r t i o n  e f f e c t s .  The ana ly t -  

i c a l  development of each i s  based p r imar i ly  on the two-dimensional theory 

of t he  unsteady flow about a t h i n  a i r f o i l .  Only the viscous wake e f f e c t  

was adopted f o r  use i n  the c u r r e n t  program, a computer program being w r i t -  

t e n  t o  c a l c u l a t e  t he  unsteady p res su res  on a blade due t o  an  approaching 

a r b i t r a r y  wake ve loc i ty .  

The genera t ion  of waves i n t o  a medium surrounding a p l a t e  by unsteady 

f o r c e s  on the p l a t e  sur face  is a coupled problem r e q u i r i n g  s o l u t i o n  of the 

equat ion of motion f o r  t ransverse  displacement of t he  p l a t e  as we l l  as 

s o l u t i o n  of t he  wave equat ion i n  the medium. The two s o l u t i o n s  a r e  coupled 

by the boundary conditions which r equ i r e  c o n t i n u i t y  of both the normal 

v e l o c i t y  and pressure ac ross  the f lu id -p la t e  i n t e r f a c e .  To es t imate  the  

order  of magnitude of the wave amplitude generated by t h i s  coupled motion, 

a simpler example problem discussed  i n  Ref. 1 was  considered. This example 

problem consisted of a p l a t e  of i n f i n i t e  e x t e n t  and uniform th ickness .  The 

f l u i d  medium above the p l a t e  was  assumed t o  be coupled t o  the  p l a t e  motion, 

bu t  the f l u i d  below the p l a t e  was not .  

y i e l d i n g  f o r  t h i s  example problem an expression f o r  t he  amplitude of the 

waves generated by an unsteady fo rce  on the p l a t e .  

The coupled equat ions  were solved, 

4 
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To est imate  the order of magnitude of the amplitude of the waves generated 

by an unsteady ve loc i ty  boundary condi t ion a t  the i n l e t  of a blade row ( o r  

duc t ) ,  a second simple example w a s  assumed. 

s t r a i g h t ,  i n f i n i t e ,  rectangular  duct  with a simple harmonic ve loc i ty  a t  

i t s  i n l e t  boundary, which ve loc i ty  was uniform i n  the plane of the duct .  

The wave equation w a s  solved t o  y i e l d  the generated wave amplitude. 

This example consis ted o f  a 

Typical Mark 10 pump data  were then used t o  cpmpare the amplitudes of the 

waves generated by these two sources.  This  comparison ind ica ted  t h a t  the  

amplitude of the waves generated by the pressure loadings,  corresponding 
t o  Task 2c above, were l e s s  by a f a c t o r  of lo4  t o  10 5 than those generated 

by the  ve loc i ty  boundary condition. 

need no t  be considered i n  ca l cu la t ing  .the pump blade wake o s c i l l a t i o n  

amplitudes. 

Thus, the t a sks  denoted a s  2b and 2c 

A t e s t  program was conducted i n  support  of the  a n a l y t i c a l  i nves t iga t ion .  

The primary objec t ive  was t o  e s t a b l i s h  experimentally t y p i c a l  ve loc i ty  

f i e l d s  a t  t he  discharge of cen t r i fuga l  impel lers  a s  a funct ion of d i s tance  

from the impel ler .  Secondary objec t ives  included measuring the dynamic 

pressures  on a vo lu te  tongue and measuring the dynamic pressures  down- 

stream due t o  the acous t ic  waves t o  attempt a c o r r e l a t i o n  with the  v e l o c i t y  

f i e l d  da t a .  The t e s t s  were conducted i n  the  Mark 10 a i r  r i g  using two each 

LOX and fue l  pumps with impellers of both 6 f u l l  vanes and 6 fu11/6 s p l i t t e r  

vanes. The ve loc i ty  data  were obtained with two hot-wire anemometer mod- 

u l e s ,  bu t  the da ta  from one of the modules was l a t e r  found t o  be cons is t -  

e n t l y  y i e ld ing  v e l o c i t i e s  which were t o o  low.  

Some typ ica l  da ta  obtained from the  Mark 10  6+6 impel ler  f u e l  pump a r e  

shown i n  Fig.  1. 

r a d i a l  and t angen t i a l  unsteady components which, except f o r  secondary flows, 

The ve loc i ty  vector  shown is the  vec tor  sum of the  

5 
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Total Velocity Vector As A Function Of Radial Distance (a) 
From The Impeller Tip 

6-6 Vane Impeller - Air Rig Facility 
Speed = 2100 r p m  - Nominal Flow 

STATION A-1 

f 
228 
f P S  

Figure 1. Velocity Oscillations at the Mark 10 Fuel Impeller Discharge 
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r ep resen t s  the t o t a l  ve loc i ty  vec tor .  

the c l a r i t y  of the da ta ,  and the r e l a t i v e  amplitude as a func t ion  of d i s -  

tance from the impeller,  a r e  of i n t e r e s t .  

t o  determine an average amplitude of the unsteady v e l o c i t y  a t  a d i s t ance  

of approximately 0.125 inch  f rom the impeller t i p .  

average unsteady v e l o c i t y  amplitude t o  the d i f f e rence  i n  the impel le r  t i p  

speed and the  mean f l u i d  ve loc i ty  i n  the volu te  was found t o  be approxi- 

mately 1.0, i nd ica t ing  lower o s c i l l a t i o n  amplitudes f o r  a high-head pump 

opera t ing  a t  a f ixed  speed, 

The wave shape near  t h e  impeller,  

Data of  t h i s  type were analyzed 

The r a t i o  of t h i s  

Data from f i v e  successive pump revolu t ions  were manually superimposed t o  

i n d i c a t e  the average blade wake v e l o c i t y  p r o f i l e  and the e x t e n t  of the 

v a r i a t i o n s  from t h i s  average near  the impeller t i p .  The t o t a l  v e l o c i t y  

vec to r  a t  a d i s t ance  of 0.125 inch from the impeller i nd ica t ed  a s t rong  

time c o r r e l a t i o n .  The r a d i a l  component d id  not  i nd ica t e  as much c o r r e l a t i o n .  

A t y p i c a l  p l o t  of the r e l a t i v e  v e l o c i t y  vs the r a d i a l  d i s tance  from the 

impeller i s  shown i n  Fig.  2 .  This r e l a t i v e  v e l o c i t y  i s  defined on the 

f igu re ,  and ind ica t e s  the ra te  of mixing and subsequent smoothing of the 

v e l o c i t y  v a r i a t i o n s .  The average amplitudesof the unsteady pressures  on 

the  lead ing  edge of the volute tongues were a lso determined. These va lues  

ranged from 0.01 t o  0.038 p s i ,  Using da ta  from one of the pumps, t h i s  

p re s su re  w a s  computed us ing  the viscous wake e f f e c t  theory and found t o  

be 0,023 p s i ,  i n  good agreement wi th  the  da t a .  

7 
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BLADE: WAIiE OSCILLATIONS--"SMISSION 
OF ACOUSTIC WAVES 

\ 
\ 

The effective amplitudes of the blade wake oscillations of the turbopump 
are strongly dependent on the system through which the oscillations are 

transmitted. The acoustic properties of this system must be adequately 

defined before either calculation of the estimated amplitudes or explana- 
tion of experimental amplitudes can be made. 
this phase of the current study was to investigate the acoustic properties 
of certain elements commonly found in engine or test facility pump systems. 

The primary objective of 

The general theory of the transmission of waves in a source-free, non- 
viscous medium in a straight duct was reviewed. The solution o f  the wave 
equation was given in terms of the eigenfunctions and eigenvalues capable 
of describing a general wave. 
wave case, and reflected waves were added to yield the familiar "time- 
delay" equations which were used extensively in the analysis of the data. 
The transmission of waves in discontinuities was then considered where a 
discontinuity is any element which causes a deviation from a uniform 
straight duct. The discontinuities considered in the present study were 
elbows, valves, orifices, and volutes. 

This solution was then reduced to the plane 

If it is assumed that the compressibility of the fluid can be neglected 
within the bounds o f  the discontinuity, the flow within these bounds obeys 
the Laplacian equation rather than the wave equation. If the discontinuity 

is also assumed to be symmetric so that the velocity and velocity potential 
are identical at its entrance and exit, then the discontinuity can be 

treated as a plane transformer, i.e., plane discontinuity, connecting two 
arms of an infinite pipe. The transformer requires continuity across its 
boundary of both the velocity potential and the velocity. This technique 

is presented in Ref. 2 .  

9 



Both mitered and curved elbows were s tudied  by t h i s  technique of plane 

d i s c o n t i n u i t i e s .  The so lu t ion  was  obtained f o r  the apparent  iner tance  

of the elbows i n  the  form: 

0.20 0.10 

L = 26 p J x / S  f o r  mitered elbows 

0.01 Mitered 

and 

30 degrees 0.088 

60 degrees 

90 degrees 0.10 

1 1 0.10 

L = 2 6  p (R1 - R2)/S f o r  curved elbows (2) 

0.16 0.18 0.20 0.22 

0.28 0.37 0.41 

0.24 0.34 0.50 I 0.58 

0.22 

where p is the f l u i d  dens i ty ,  Jx the  width of a two-dimensional channel, 

F$ and R the outer and inner  elbow r a d i i ,  respec t ive ly ,  and S i s  the duct  

cross-sect ional  area.  The values  obtained f o r  the  cons tan t  26 f o r  d i f f e r -  

e n t  elbow turning angles  Cp were: 

2 

The t o t a l  elbow impedance c o n s i s t s  of the  iner tance  value determined by 

e i t h e r  Eq. 1 o r  2 p lus  the iner tance ,  compliance, and r e s i s t a n c e  of the 

elbow t r e a t e d  as a s t r a i g h t  p ipe  wi th  length  equal t o  the  c e n t e r l i n e  

length  of the elbow. 

d a t a  f o r  the energy l o s t  i n  flowing through the  elbow. 

This r e s i s t a n c e  must be determined from experimental  

The valves  were assumed t o  be representab le  by a p lane  b a r r i e r  l oca t ed  

i n  an otherwise uniform two-dimensional duct .  

s e n t s  a plane d iscont inui ty .  

a l l y  i n  the duct  w a s  analyzed f o r  severa l  r a t i o s  of blocked a r e a .  

This  b a r r i e r  a l s o  repre-  

The case of the  b a r r i e r  l oca t ed  symmetric- 

The 

10  
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0.05 0.10 0.20 0.30 0.40 0.50 

3.23 2.37 1.50 1.05 0.67 0.44 

iner tance  computed was of the same form a s  given i n  Eq. 1. 

equal the unblocked t o  t o t a l  a rea  r a t i o ,  the following values of the con- 

s tan t  26 were obtained: 

Le t t i ng  a/& 
X 

0.75 

0.097 

For a poppet valve s i t t i n g  i n  an elbow, a s  occurs i n  the Mark 10 pump d is -  

charge l i n e s ,  t h i s  iner tance  would have t o  be added t o  the t o t a l  impedance 

of the elbow por t ion .  I f  the valve does no t  r e s t r i c t  the flow by decreas- 

i ng  the cross-sect ional  a rea ,  then i t  would be represented by a b a r r i e r  

wi th  zero width and, thus,  with zero iner tance .  

The impedance of o r i f i c e s  has been the subjec t  of previous inves t iga t ions  

which a r e  reported i n  the l i t e r a t u r e .  The o r i f i c e  r e s i s t ance  cons i s t s  of 

a r a d i a t i o n  term, a v i s c o s i t y  term with a co r rec t ion  f o r  hea t  conductivity,  

and a ve loc i ty  term. The reactance term i s  formed from the  c l a s s i c a l  mass 

expression with a co r rec t ion  f o r  both ve loc i ty  and wal l  i n t e r a c t i o n  e f f e c t s .  

The d i s t ingu i sh ing  c h a r a c t e r i s t i c  of  a volute i s  t h a t  i t s  cross-sect ional  

a r e a  i s  changing a s  a funct ion of the d is tance  t rave led  along the volute  

a x i s .  

r e l a t i o n s h i p  which i s  c h a r a c t e r i s t i c  of m o s t  vo lu tes .  Plane waves were 

assumed s o  t h a t  the  wave equation with the l i n e a r  area-to-distance charac- 

t e r i s t i c  reduces t o  a modification of Besse l ' s  equation which can be r e a d i l y  

solved i n  terms of Bessel  funct ions.  However, although the  volute  horn 

equat ion is r e a d i l y  solved, the s o l u t i o n  i s  not  i n  a form convenient f o r  

use i n  any system frequency-response ana lys i s .  Therefore, the  impedance 

of the volu te  must be approximated by d iv id ing  the volu te  i n t o  a number of 

segnents ,  each represent ing a s t e p  change i n  cross-sect ional  a r ea .  Using 

an average a r e a  f o r  each segment, i t s  r e s i s t ance ,  iner tance ,  and compliance 

can be computed i n  the same manner a s  f o r  a segment of s t r a i g h t  pipe.  

Thus, the volute  was t r ea t ed  a s  a horn with a l i n e a r  area-to-distance 

11 
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-411 experimental program w a s  conducted t o  v e r i f y  and supplement the ana- 

l y t i c a l  r e s u l t s .  

a ted  by an o s c i l l a t o r  through a power ampl i f ie r  as the  acous t i c  wave source.  

Tes ts  were conducted i n  simple systems cons i s t ing  of s t r a i g h t  p ipes  with an 

included elbow, valve, t ee  j o i n t ,  conica l  horn, o r  o r i f i c e .  The frequency 

was ramped from 50 t o  4000 cps i n  each t e s t ,  bu t  only the da t a  i n  the  lower- 

frequency range were analyzed. 

The t e s t s  were conducted i n  a i r  using a horn d r i v e r  actu- 

The object ive of the ana lys i s  of the da t a  w a s  t o  express the impedance of 

each element t e s t ed  i n  proper parametric form and t o  solve f o r  the param- 

e t e r  values  t o  compare these with t h e i r  p red ic ted  values .  Su i t ab le  analog 

models were developed, and a multiparameter opt imizat ion technique used t o  

determine the unknown parameters. 

when some defined e r r o r  c r i t e r i o n  w a s  minimized by the  opt imizat ion scheme 

using the t e s t  data  a s  inputs .  

The optimum parameter values  were reached 

The iner tance of the  elbows obtained from the  experimental da ta  w a s  i n  f a i r  

agreement with the pred ic ted  value;  however, the  a n a l y t i c a l  iner tance  i s  

pr imar i ly  a l i n e  iner tance ,  the  por t ion  due t o  the  plane d i scon t inu i ty  Gal- 

cu la t ion  being a small percentage of the  t o t a l .  

t o  a n a l y t i c a l  elbow iner tance  was i n  the  range 0.86 t o  1.08 wi th  an average 

of 0.96. The valves t e s t e d  were Mark 10 valves  i n  the  wide open p o s i t i o n  

such t h a t  no area reduct ion i s  obtained. 

t o  a c t  l i k e  a sec t ion  of elbow, and the ca l cu la t ed  and experimental  e f fec-  

t i v e  iner tance  of the valve were i n  good agreement. 

The r a t i o  of the  experimental 

I n  t h i s  case ,  the  valve i s  assumed 

The o r i f i c e  da ta  d id  no t  agree with pred ic ted  values ,  the  d i f f e rences  being 
s o  l a rge  t h a t  the da ta  were suspect  of being bad da ta .  The conica l  horn w a s  

t r e a t e d  as a sec t ion  of s t r a i g h t  pipe with the  same diameter as the  horn d i s -  

charge, and the equivalent  optimum length  of t h e  s t r a i g h t  s e c t i o n  was  approxi- 

mately 28 percent of the a c t u a l  horn length.  

I 12 
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B W E  WAI(E OSCILLATIONS--REINFOCm OF PRESSURE 

WAVES I N  PUMPS WITH VANED DIFFUSERS 

I n  a pump with a multivaned d i f fuse r ,  each time a r o t o r  vane r o t a t e s  p a s t  

any of the  d i f f u s e r  vanes, acoust ic  waves a r e  generated.  I f  t h i s  mult i -  

vaned d i f f u s e r  feeds a s c r o l l  ( o r  vo lu te )  with a s ing le  discharge and/or 

i n l e t ,  then the waves from each d i f f u s e r  vane w i l l  be t r a v e l i n g  toward a 

common p o i n t ,  I f  these waves reach t h i s  po in t  a t  the  same time, they w i l l  

be superimposed, and a l i n e a r  superpos i t ion  was assumed. Clear ly ,  each 

wave has the same frequency and s imi l a r  amplitudes; however, the phase of 

each wave depends on i ts  time of generat ion and the d is tance  from the po in t  

of superposi t ion t o  the point  of o r i g i n  of the wave. I f  each wave i s  

exac t ly  i n  phase, wave reinforcement i s  s a i d  t o  occur, and the  r e s u l t i n g  

wave amplitude w i l l  be the sum of the amplitude of each of the  ind iv idua l  

waves. 

impose v e c t o r i a l l y  with a zero r e s u l t a n t  amplitude. 

der ived an a n a l y t i c a l  so lu t ion  f o r  ca l cu la t ing  the pump operat ing condi- 

tions a t  which wave reinforcement occurs.  

S imi la r ly ,  the phase s h i f t  of the  waves could be such a s  t o  super- 

S t rub  (Ref. 3) has 

Using the variables defined i n  Appendix A and with z S t rub  shows 

t h a t  t he  j t h  harmonic of t he  o s c i l l a t i o n s  will re inforce  through phase 

coincidence when m i s  any in teger  such t h a t :  

> Z 
i d' 

Zd - z .  
c + v  

Subs t i t u t ing  

v = K '  n/s 

(3) 

where K' i s  a constant  and S i s  the  volute  discharge cross-sect ional  a rea ,  

and solving f o r  pump speed y i e lds :  

(5) 
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S t r u b ' s  equation assumes t h a t  the wavelength of the  o s c i l l a t i o n s  i s  l a rge  

compared t o  the  change i n  the  mean volute  diameter with d is tance  along the  

volute  flowpath. 

pump t e s t e d  by Rocketdyne, the d e t a i l s  of the a c t u a l  pump geometry must be 

I f  t h i s  assumption is not  t r u e ,  as w a s  encountered i n  a 

I considered t o  ca lcu la te  more accura te ly  po in t s  of wave reinforcement.  

This equation permits computation of the  speeds a t  which the  j t h  harmonic 

w i l l  r e s u l t  i n  wave reinforcement. 

~ 14 

I t  i s  again assumed t h a t  the  amplitude of the  wave generated a t  each vane 

i s  equal,  and i t  i s  f u r t h e r  assumed t h a t  each wave can be expressed as a 

s ine  funct ion.  Le t t ing  Y equal the  r e s u l t i n g  amplitude of the superimposed 

waves divided by the amplitude of an ind iv idua l  wave, then: 

'd 
P 

Y = L  s i n  (o+ qi) 
i =1 

where ais the c i r c u l a r  frequency of the  waves and vi denotes the  r e l a t i v e  

phase of each wave. Now q can be expressed a s :  i 
S i - 0 -  

2n Ti 
- -  

x ut 
771 - 

The va r i ab le s  a re  defined i n  Appendix A. 

For a given pump, q. can be r e a d i l y  ca lcu la ted  f o r  each vane, tak ing  i n t o  

considerat ion the v a r i a t i o n  i n  the mean volute  diameter.  
1 

To determine the maximum value of Y with r e spec t  t o  time, s e t  dY/dt = 0 

(Eq. 6)  and solve fo r  t. This y i e lds :  

n. l  s i n  m. I 

Subs t i t u t ion  of Eq. 8 i n t o  Eq. 6 permits c a l c u l a t i o n  of t he  maximum super- 

imposed wave amplitude a t  any speed. Similar  r e s u l t s  can be obtained f o r  
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the  case where there  a r e  more d i f f u s e r  vanes than impel ler  vanes except t h a t  

the  wave reinforcement occurs a t  the  beginning of the volu te .  

A Mark 26 f u e l  pump w a s  t e s t e d  i n  the a i r  r i g  t o  confirm the a n a l y t i c a l  

r e s u l t s .  This pump has 29 impeller vanes and 19 d i f f u s e r  vanes. 

impel ler  vanes, the fundamental o s c i l l a t i o n  frequency i s  29 N/60 (N = pump 

speed, rpm), which is  la rge  enough t o  y i e l d  wavelengths which a r e  not  la rge  

compared t o  t he  change i n  the  mean volu te  diameter.  

used t o  compute the  amplitude as  a funct ion of speed. 

a r e  given i n  Fig.  3 .  
component of the  o s c i l l a t i o n s  a t  the  frequency 29 N/60 cps)  and pump speed 

a r e  given i n  Fig.  4 .  

With 29 

Therefore,  Eq. 6 was 

The a n a l y t i c a l  r e s u l t s  

The experimental r e s u l t s  ( f i l t e r e d  t o  ob ta in  only the  

The da ta  show increased amplitudes i n  the range of 6700 t o  7800 rpm, which 

corresponds t o  the  region where Y exceeds a value of 9.0. 
of both da ta  and Y occur a t  approximately 7200 rpm. 

increase  i n  amplitude a t  a speed of 8400 rpm and, s imi l a r ly ,  Y shows an 

increase  a t  the  same speed. However, Y does not  r e f l e c t  the  increase  i n  

amplitude observed i n  the da t a  i n  the range of 9400 t o  10,000 rpm. 

above da ta  were obtained a t  nominal f l o w .  S imi la r  r e s u l t s  were obtained 

f o r  flows a t  +3O percent  of nominal. Other harmonics o f  the  o s c i l l a t i o n  

were observed and behaved a s  expected. 

The peak value 

The da ta  show a s l i g h t  

The 
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Y = AWLITUDE OF ALL !L4VZS SUPERDPOSED 
AMPLITUDE OF A SIlycLE WAVE 

UITEI 19 DIFFUSER BLADES: Y- = 19.0 
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I 
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Figure 3. Relative Amplitude of Superimposed Waves in the Discharge 
of a Mark 26 Fuel Pump 
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Absolute Value of Discharge Pressure Oscillations 

N = Pump Speed -- Flow Coefficient = 0.09375 

Filtered A t  Frequency = 29N 

AYO . 

psi 

to3 

0.0 

I 8  0 

N 
Id' 

0.0  

1 

- 2  .... I r ~ g u r t .  9. A i r  Tesi Data Tor 'w'ave Eeiniorcement in nark 26 Fuel pump 
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Line Iner tance  

Capnci tance 

Line Iner tance  

Capacitance 

BLADE WAKE OSCILLATIONS--ATTENUATION OF 

ACOUSTIC WAVES BY ACOUSTIC DAMPERS 

0.0944 

0.271 x 

0.152 

0.169 x 

Acoustic dampers a r e  i n  general  use i n  many f i e l d s .  

simply t o  br ing  t o  the r eade r ' s  a t t e n t i o n  the a v a i l a b i l i t y  of these dampers 

and t o  demonstrate b r i e f l y  t h e i r  c h a r a c t e r i s t i c s ,  and thus t h e i r  f e a s i b i l i t y  

f o r  use i n  pump systems. Two types of dampers were considered: 

The i n t e n t  here w a s  

0.271 x 

0.152 

1. Quarter-wave tube, capac i tor ,  Helmholtz resonator ,  and Quincke tube.  

These dampers a c t  e f f e c t i v e l y  a s  a branch iner tance  and/or capaci- 

tance i n  the l i n e .  

f t 5 / lb  

lb-sec / f t  2 5  

2. Tube bundle, screens,  and b a f f l e s .  These a c t  p r imar i ly  a s  a 

res i s tance  i n  the l i n e .  

A l l  of these dampers a r e  shown i n  F ig .  5. The t h e o r e t i c a l  f i l t e r i n g  charac- 

t e r i s t i c s  of a l l  of the f i r s t  type of dampers were ind ica ted ,  and a l l  o f  the 

dampers were t e s t ed  using an acous t ic  sound source i n  a i r .  The t e s t  r e s u l t s  

were analyzed on the analog computer t o  determine the optimum experimental 

parameter values def in ing  the damper. These optimum values were then com- 

pared with the theo re t i ca l  values.  Resul t s  obtained f o r  the capac i tor  and 

resonator  a r e  given below: 

Capacitor 

Helmholtz 
Res onator 

Experimental I Va 1 ue I Units  
Theore t ica l  

0.0895 I lb-sec2/f t5 I 

0.179 x I f t 5 / l b  

With only an acous t ic  flow, i . e . ,  no s teady flow, the  r e s i s t a n c e  i n  a l l  the  

t e s t s  was l o w  compared t o  any l i n e  iner tance .  

values of the tube bundle, screens,  and b a f f l e s  could n o t  be determined 

experimentally.  

Therefore ,  the  r e s i s t a n c e  

I 18 
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CAW TAT I ON-INDUCED OSCILLATI ONS 

I n  the process  of improving pump suc t ion  performance, pump inducers  have 

been requi red  t o  operate a t  l o w  values  of NPSH. A s  a r e s u l t ,  the  flow 

becomes increas ingly  unstable  due t o  t he  occurrence of p a r t i a l  o r  l imi t ed  

c a v i t a t i o n  on the suc t ion  s ide  of the inducer vanes. The p resen t  e f f o r t  

was concentrated on descr ib ing  the  mechanism of o s c i l l a t i o n s  r e l a t e d  t o  

the formation of f i n i t e  c a v i t i e s  a t  the  blade leading edges as the p r inc i -  

pa l  mode of cav i t a t ion ,  thus neglec t ing  the  poss ib l e  e f i e c t  of a second 

mode of cav i t a t ion  involving two-phase flow, as wel l  as the e f f e c t  of t i p  

vortexes.  I n  t h i s  ca se ,  the  unsteady flow phenomena i n  the  inducer can be 

descr ibed i n  terms of the  con t inu i ty  condi t ion  appl ied  t o  the  inducer i n l e t  

and discharge flow giving the c a v i t y  s i z e  as a func t ion  of the excess of 

discharge over i n l e t  flow on the  one hand, and i n  terms of the f r e e  stream- 

l i n e  theory f o r  a c a v i t a t i n g  p o t e n t i a l  flow on the other  hand. 

The con t inu i ty  condi t ion expresses  the cav i ty  volume as:  

V C = ( p  g)-l  (G2 - Gl)  d t  

where G and G are  discharge and i n l e t  f lowra te ,  r e spec t ive ly ,  and p i s  

the dens i ty .  The c a v i t a t i n g  flow i n  the  inducer i s  assumed t o  be descr ibed 

by the  f r e e  s t reamline wake theory given i n  Ref .  4. A computer program w a s  

w r i t t e n  t o  evaluate  the f r e e  s t reamline theory t o  ob ta in  the c a v i t y  a r e a  as 

a func t ion  of cav i t a t ion  number and angle of incidence of the inducer  flow. 

A second computer program w a s  w r i t t e n  t o  express  t h i s  a r e a  by 8 s u i t a b l e  

r e l a t i o n s h i p  (curve f i t )  f o r  use on the analog computer. 

computed from these t w o  programs w a s  expressed i n  the  form: 

2 1 

The c a v i t y  volume 
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where Sn i s  the n e t  cav i ty  area given by: 

2 7 
j i  

CY7 
'n = I  j = o  i = o  1 a (l+i +4 j ) 

where ff and 7 a r e  angle of incidence and c a v i t a t i o n  parameter a t  t he  t i p ,  

r e spec t ive ly .  

Equations 9, 10, and 11 a r e  three of the quasi-steady equations descr ib ing  

the  dynamics of a c a v i t a t i n g  inducer.  The other  equations required a re :  

7 
p1 - pv 2 

n + < p  - - 
0 .5  p v "  

f 

The va r i ab le s  a r e  defined i n  Appendix A. 

and 16 a r e  determined by a curve f i t  of the average shape of the  head vs 

flow (Eq. 15) and head vs  NPSH (Eq. 16) r e l a t ionsh ips  fo r  a given inducer.  

The coe f f i c i en t s ,  bi, i n  Eq. 15 

A s e t  of e i g h t  equations a r e  thus derived f o r  the dynamic model o f  a cavi- 

t a t i n g  inducer,  bu t  the  equations contain 10 unknowns, obviously r equ i r ing  

two input  va r i ab le s .  

stream of the  inducer ( i . e . ,  P 1 2 
y i e l d s  no output da t a  which can be compared t o  evaluate  the  theory.  

m i t  comparison of the theory with t e s t  da t a  would requi re  both dynamic 

Dynamic pressures  a r e  known j u s t  upstream and down- 

and P ); however, using these as input  da ta  

To per- 
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pressure and flow data. 
available, the inducer test facility must be modeled dynamically to estab- 
lish two more relationships for the pressure and flow at the inducer 

extremities. 

Or, since dynamic flow data are not generally 

The Rocketdyne water tunnel was modeled by dividing the tunnel into a num- 
ber of finite elements, consistent with junctions, area changee, and valve8 
contained in the system. 
and capacitance, the resistance being neglected. 
of variations in certain less-defined characteristics of the water tunnel 
were determined and found to be large, resulting in uncertainty of the 

model. Because these characteristics are currently unknown, the ideal 
system model was adopted for use in the current study. 

Each element was represented by a finite inertance 
The effects on the model 

The water tunnel model provides the two required relationships between the 
dynamic pressure and flow at the inducer inlet and discharge. 
water tunnel model and the dynamic equations of the cavitating inducer were 
then modeled on the analog computer to form a closed-loop system for etudy- 
ing the cavitation oscillations. However, although both the inducer and 
the water tunnel analog models appeared to be stable and yielded correct 
results in certain individual check tests, the closed-loop system was 
unstable. 
studies, permitting comparison of the theory with test data. 

Both the 

These instabilities could probably be eliminated in further 
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STALL OSCILLATIONS 

Experience with air compressors has confirmed two types of stall--progres- 
sive stall and abrupt stall--each characterized by stall zones which rotate 
in the pump at speeds of approximately one-half the shaft speed and which 
generate pressure and flow oscillations in the pump discharge system. Pro- 
gressive stall is indicated by a smooth continuous loss in pump head at 
reduced values of flow coefficient, while abrupt stall is characterized by 
a sharp discontinuous drop in head. The head capacity performance curve 
of centrifugal pumps generally is characterized by a smooth loss of head 
indicating a possible progressive stall, and the axial pump has a perform- 
ance curve characteristic of an abrupt stall. 

Both axial and centrifugal pumps were tested in air test facilities to 
observe experimentally any stall oscillations which might occur. The axial 
pump was a Mark 26 fuel pump. 
characteristic stall hysteresis loop and characteristic stall oscillations 
with frequencies of approximately one-half the shaft speed and high ampli- 

tudes. These data are shown in Fig. 6 .  
seen to be four to six times larger during stall. 

This pump exhibited an abrupt stall with a 

The oscillation amplitudes are 

Three centrifugal pumps were tested, a Mark 10 LOX pump and two Mark 10 
fuel pumps with a 6 vane and 6+6 vane impeller. The LOX pump indicated 
no drop in head, down to almost zero flow. 
continuous drop in head, indicating a progressive stall. However, none 
of the centrifugal pumps evidenced any stall oscillations. 

Both fuel pumps had a smooth 
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APPEXDIX A 

NOMENCLATURE 

c o e f f i c i e n t s  f o r  curve f i t  of cav i ty  a rea  

c o e f f i c i e n t s  f o r  curve f i t  of inducer head r i s e  

acous t i c  ve loc i ty  

mean volute  diameter 

acce le ra t ion  of grav i ty  

s e r i e s  def in ing  the iner tance  of a plane d i scon t inu i ty  

harmonic number or dummy va r i ab le  

constant  

width o f  two-dimensional channel 

iner tance  

i n t e g e r  

pump speed i n  rps  and rpm, respec t ive ly  

number of blades 

NPSH = n e t  p o s i t i v e  suct ion head 

- - pressures ,  e.g., i n l e t  and discharge 

- - vapor pressure  

p1’p2 

pV 

R1 , R2 

r,rT,rH = r a d i i ,  e .g . ,  a t  t i p  ( T )  and hub (H) 

= outer  and inner  r a d i i  of curved elbow 

S = t angen t i a l  dis tance between the  i t h  d i f f u s e r  vane and i t s  i n e a r e s t  neighboring impel ler  vane i n  the  d i r e c t i o n  opposite 
t o  t he  impel ler  ro t a t ion  f o r  a given o r i e n t a t i o n  of impel ler  
and d i f f u s e r  

S = a r e a  (with various subsc r ip t s )  
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= time 

= distance traveled by wave from the discharge of the ith blade 
to a point of superposition of waves 

= impeller tip speed 

= mean fluid velocity in volute 

= cavity volume 

= weight flowrate 

= cavity coordinates 

= blade thickness coordinate 

= amplitude of superimposed waves divided by amplitude of 
single wave 

= number of diffuser and impeller blades, respectively 

= angle of incidence 

= blade angle 

= phase angle 

= wavelength of oscillations 

= fluid density 

= cavitation parameter 

= flow coefficient 

= head rise coefficient 

= circular frequency 
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